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Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric

Yukawa ionic mixtures

Tomorr Haxhimali,∗ Robert E. Rudd, William H. Cabot, and Frank R. Graziani
Lawrence Livermore National Laboratory,

Livermore, California 94550, USA

We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma
for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas.
Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a
number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions
interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included
in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated
using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a
quantity calculated in the equilibrium MD simulations. We systematically study different mixtures
through a series of simulations with increasing fraction of the minority high-Z element (Ar) in
the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions,
results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly
coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple
model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa
viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the
MD results over the conditions simulated, ranging from moderately weakly coupled to moderately
strongly coupled asymmetric plasma mixtures.

PACS numbers: 52.25.Fi,52.27.Gr,52.29.Hq

I. INTRODUCTION

Plasma transport theory has been key to understand-
ing a broad range of phenomena from stellar and plane-
tary interiors [1–3] to dusty plasmas [4] to inertial con-
finement fusion [5]. It was formulated as an extension
of the kinetic theory of gases by Chapman and Cowl-
ing [6] and subsequent authors like Spitzer [7]. While
successful for weakly coupled plasmas, it is limited by
its reliance on a small-angle, binary collision operator.
The resulting equations for viscosity and other transport
coefficients are not accurate for dense and strongly cou-
pled plasmas [8–10]. This inaccuracy can matter for
applications of current interest. For example, a recent
study investigated the effect of viscosity on turbulence
near the hot spot that can affect the yield in inertial con-
finement fusion [11, 12]. At the time of peak fuel kinetic
energy [11], we find that the actual viscosity differed by
as much as 70% from what the Chapman-Cowling theory
[6] predicts.
Often the issue is described as an error in the Coulomb

logarithm that enters the expression for the scattering in-
tegral, the logarithm of the ratio of a long-distance cut-
off to a short-distance cutoff. Both of these cutoffs are
somewhat ill defined for the Coulomb interaction, related
respectively to the screening length and a short-distance
scale such as the classical turning point or the de Broglie
wavelength.
Even the case of single-species plasma is challenging,

and the case of mixtures is more so. Mixtures exhibit a
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more diverse set of phenomena. The case of asymmet-
ric plasmas is particularly interesting, that is mixtures
in which the ionization states of the constituents differ
significantly. Kinetic theory breaks down as one species
in the plasma becomes strongly coupled. For example,
both the syrup-like viscosity of strongly coupled dusty
plasmas [13] and the vanishing viscosity of the superfluid
component of Bose-Einstein condensates [14] are related
to correlations that are not accounted for in conventional
kinetic theory.

The viscosity of plasma mixtures is of interest for a
variety of applications. Viscosity is a resistance to shear
flow in the plasma. It contributes to the hydrodynamic
equations that describe the plasma flow. Viscosity affects
convective flow in gas giant planets and the associated
convective heat losses.

And, viscosity η enters into the Reynolds number,
Re = ρvL/η, which characterizes fluid flow and the level
of turbulence [15]. Here ρ is the mass density, v is a char-
acteristic flow velocity and L is a characteristic length.

Plasma viscosity increases in both the high and low
temperature limits [16, 17]. At low temperatures as the
temperature is lowered further, the plasma coupling in-
creases and correlations become more important. Even-
tually, the plasma undergoes a phase transformation to
a solid which has strength, but even prior to that the
viscosity increases as more shear stress is needed to over-
come the ion-ion interactions and get the fluid to flow.
Ionic correlations are very important in this regime. At
high temperatures, further increasing the temperature
increases the viscosity due to kinetic contribution to vis-
cosity. The ionic potential contribution is negligible in
this weakly coupled regime, but both the magnitude of
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the shear stress fluctuations and the mean free time are
increasing with temperature causing the viscosity to rise.
That behavior from strong coupling to weak coupling has
been studied extensively for single species plasmas. It is
expected to apply to mixed plasmas as well, but the de-
tails are not well understood. The case of asymmetric
plasma mixtures is particularly interesting. While new
techniques are coming on line to measure the viscosity of
plasmas such as using the Brillouin peak in x-ray Thom-
son scattering [18], few experimental data are available.

Here we use classical molecular dynamics (MD) to sim-
ulate the momentum transfer processes associated with
the viscosity of an asymmetric plasma mixture. MD sim-
ulates the motion of ions by integrating Newton’s Law
(F=ma) for a large collection of ions interacting via a
specified force law. MD has been shown to provide accu-
rate values for the viscosity of strongly coupled plasmas
like liquid metals [19, 20] and weakly coupled plasmas
[21]. The accuracy of the predictions depends on the fi-
delity of the inter-ionic potential that is used, i.e., the
potential from which the force law is derived. Here we
use the Yukawa (screened Coulomb) potential.

The literature on computing viscosity for one compo-
nent plasmas using MD is very rich. For Yukawa sys-
tems Sanbonmatsu and Murillo [22] as well as Donkó
and Hartmann [23] used nonequilibrium MD (NEMD)
simulations that mimic experiment by applying an ex-
ternal shear. On the other hand viscosity can be ex-
tracted by equilibrium MD (EMD) in the limit of very
small stress. In equilibrium conditions the momentum
transport arises from gradient in velocity, created from
thermal fluctuations, without any imposed shear. Using
equilibrium MD Bastea [24] computed the shear viscosity
for one component plasmas immersed at a rigid neutral-
izing electron background for coupling that ranges from
0.05 to 100. Recently the work of Daligault et al. [21]
has extended the study of viscosity to couplings as low
as 0.01 and built a model that reproduces the Landau-
Spitzer form at weakly coupled limit and compares well
with the Bastea results at moderate and strongly cou-
pled limit. A thorough parametric study of viscosity for
one component Yukawa systems was conducted by Saigo
and Hamaguchi [17] and Salin and Caillol [25]. Donkó et
al. have used both EMD and NEMD to study viscoel-
stic response of strongly coupled Yukawa liquids [26]. An
extension of the Chapman-Cowling method to compute
transport coefficients including viscosity, to the strongly
coupled limit for one component Yukawa systems has
been recently introduced and tested with MD [27].

For Yukawa binary mixtures a parametric study of
shear viscosity and thermal conductivity was conducted
by Salin and Gilles [28]. They limited this study to mix-
tures where the mass ratio of the ion species was assumed
the same with the charge ratio and kept at a constant
value 5. Bastea [24] developed a model for the viscosity
of binary mixtures that was derived by using effective
medium theory. To include the effect of the electrons,
Murillo [19] proposed a quasiuniversal viscosity model

for Yukawa systems. To extend his model to mixtures he
suggested to use the effective Coulomb coupling Γeff .

Despite this body of work, important questions remain
unresolved: For what range of thermodynamic conditions
classical kinetic description of viscosity, like Landau-
Spitzer and Chapman-Enskog, remain valid in asymmet-
ric mixed plasmas? What is the effect of a strongly corre-
lated component in the nature of momentum transport?
How accurate are the existing mixing rules? We address
these questions here.
The article is organized as follows. In Section II a

description of the condition of mixed plasmas studied is
followed by a short review of the Green-Kubo technique
used to extract shear viscosity, and details of the MD
simulations. In Section III, MD results are shown. In
Section IV we compare our MD results of shear viscosity
with those from kinetic theories. Existing mixing rules
are tested with respect to MD and a new mixing rule
is introduced in Section V. Summary is finally given in
Section VI.

II. FORMULATION AND METHODOLOGY

A. Mixed plasma description

In this work we focus on plasma consisting of binary
mixtures of deuterium and argon ions at dense condi-
tions with a total number density of n = 1025 ions/cc
and temperatures T from 100 to 500 eV. At these con-
ditions it is a good approximation to treat the ions as
statically screened electric charges by a polarizable free
electron background. The electrons adiabatically follow
ionic dynamic, and as a result the ions will interact with
each other through an effective screened Coulomb inter-
action potential. Within linear response theories [29, 30]
the interaction between ions is the Yukawa potential [31]:

V (rij) =
Z∗

i Z
∗

j e
2

4πǫ0rij
exp(−rijkD,e), (1)

where Z∗

i and Z∗

j are the average ionized charges of
ions i and j and rij is their distance. This potential
captures the electron polarizability in a linear response
regime [29, 30]. Several recent articles [32–34] have ver-
ified its validity in warm and hot dense matter regimes,
and it is expected to provide an accurate description of
the 100 eV and hotter plasmas studied here. Polariz-
able BIM models [35–37] have been developed for binary
mixed plasmas based on a similar motivation. In the
linear response limit the screening coefficient due to the
electrons kD,e that enters in the Yukawa potential (1)
may be approximated as [19, 38, 39]:

kD,e ≈
√

√

√

√

nee2

ǫ0

√

(kBT )2 +
(

2
3EF

)2
. (2)
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This expression for the screening coefficient is a Debye-
Hückel [40] form with an effective temperature that ac-
counts for the partial degeneracy of the electrons using
the Fermi energy of the free electron gas

EF = ~
2(3π2ne)

2/3/2me. (3)

Here me is the electron mass. Due to global charge
neutrality, the electron density ne is related to ion den-
sity and the average charge 〈Z∗〉 of the mixture by
ne = 〈Z∗〉n. Unless otherwise mentioned in this arti-
cle the angular brackets 〈· · · 〉 represent a mole fraction
weighted average of thermodynamical variable Ξ, such
that 〈Ξ〉 ≡ ∑

i XiΞi, where Xi is the mole fraction of
species i.
Yukawa (screened Coulomb) systems can be described

by two dimensionless parameters, eliminating the dimen-
sions of length using the Wigner-Seitz radius, rws =
(

3
4πn

)1/3
. The two dimensionless parameters are the

screening coefficient κ = rws kD,e [4] and the Coulomb
coupling coefficient Γ = (Z∗)2e2/4πǫ0rwskBT , which is
the ratio of the average Coulomb energy to the thermal
kinetic energy. These are the only two dimensionless
parameters of a single-species Yukawa system. Alterna-
tively, one can use the coupling strength which is the ra-
tio of the average nearest neighbors interionic potential
to the kinetic energy. For Yukawa systems this is ap-
proximately given by e−κΓ. An accurate definition and
computation of the coupling strength for Yukawa systems
can be found in the work by Ott et al. [41].
The Coulomb coupling of the mixtures is usually de-

scribed as an average over the coupling of each species:

Γeff = X1Γ1 +X2Γ2, (4)

where Γi = (Z∗

i )
2e2/4πǫ0rikBT is the coupling of the

component i in the mixture. The “ion-sphere” radius [42,
43] ri given by

ri ≡
(

3

4πne
Z∗

i

)1/3

=

(

3

4πn

Z∗

i

〈Z∗〉

)1/3

= rws

(

Z∗

i

〈Z∗〉

)1/3

,

(5)
represents a neutral sphere, where the charge of the free
electrons compensates for the charge of the ions. This
compensation reflects the local charge neutrality. Using
Eq. (5) gives the following expression for Γi:

Γi =
1

4πǫ0

〈Z〉1/3Z5/3
i e2

kBTrws
. (6)

Plugging Eq. (6) into Eq. (4) gives the following for
the effective Coulomb coupling of a binary mixture:

Γeff =
〈Z∗〉1/3〈(Z∗)5/3〉e2

4πǫ0rwskBT
. (7)

Alternatively the effective coupling for Yukawa binary
mixture considering the dimensionless screening is ap-
proximately given by e−κΓeff . For the conditions that

we studied here the dimensionless screening κ varied in
the range κ ∈ [0.57, 1.57] and the Coulomb effective cou-
pling Γeff ∈ [0.88, 34.85].
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FIG. 1. (Color online) Effective coupling for D-Ar mixture
at 100 eV and ion density 1025 cm−3 as a function of Ar
mole fraction. The ionized charges of the two species are kept
constant at Z∗

Ar = 13 and Z∗

D = 1. With black solid line
we plot the value of the Coulomb effective coupling Γeff from
Eq. (7). The red dashed line represents values of the Yukawa
coupling e−κΓeff , and the blue dashed-dot line corresponds to
values computed for Γ12 in Eq. (8). In the same figure we
show the system coupling as measured directly from MD.

Another form found in literature [38, 44] that describes
the coupling of the binary mixture is:

Γ12 =
Z∗

1Z
∗

2e
2

4πǫ0r12kBT
, (8)

where r12 is the average ion-sphere radius given by

r12 =
r1 + r2

2
. (9)

In Fig. 1 we plot all these different couplings for the
binary mixture of D and Ar at 100 eV as a function of
Ar mole fraction. Also, in the same figure, with symbols
we plot reference values for the coupling of the system
computed from MD simulations as the ratio of the total
average potential energy to kinetic energy. The values
extracted for the coupling from the Yukawa definition,
i.e. e−κΓeff , are the ones that most closely follow the
values computed from MD on the whole range of compo-
sitions in the mixture. The values computed from Eq. (8)
overestimate the coupling coefficient of asymmetric mix-
tures with low concentration of the high Z element by
more than a factor of 7. As seen in Fig. 1 this large dis-
crepancy is present for most of the range of composition.
Only for the threshold value ≥ 40% Ar mixture does Γ12

approach the value computed from e−κΓeff . This thresh-
old value should decrease with the charge asymmetry of
the mixture.
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To quantify the electron fluid degeneracy we use the
Ichimaru definition [38] of the electron degeneracy pa-
rameter:

Θ ≡ kBT

EF
. (10)

This parameter asymptotes to 0 as T goes to zero and/or
ne goes to infinity, in which limit the electrons are fully
degenerate. It goes to infinity in the other extreme where
the electrons behave as classical particles. For the system
studied here the degeneracy parameter varies in the range
Θ ∈ [0.5, 3].

B. Green-Kubo for shear viscosity

In the hydrodynamic scale the conservation equation
for the momentum transfer in a finite element of fluid is
given by the Navier-Stokes equation:

∂t(ρv) + v · ∇(ρv) = −∇ ·
↔

Π −∇P + F, (11)

where ρ is mass density, v is Eulerian velocity, P is total
pressure and F includes different forces like the ones due
to electric field [45, 46]. Viscosity enters as a transport

coefficient in a closure for the viscous stress tensor
↔

Π in
a linear response approach [15]:

Πij = −ζδij(∇v) − η

[

∂vi
∂rj

+
∂vj
∂ri

− (2/3)δij(∇v)

]

,

(12)
where ζ and η are bulk and shear viscosity, respectively.
In this linear approach it is assumed that the momentum
flux is proportional to the magnitude of the shear stress
that caused it, and η is the coefficient of proportional-
ity. Keeping only the linear-order terms with respect to
gradients in Eq. (12) corresponds to the Navier-Stokes
hydrodynamics. Adding the next order gradient terms
corresponds to Burnett and super-Burnett hydrodynam-
ics [6].
In situations close to equilibrium virtual fluctuation of

velocity gradient can be considered in Eqs. (11) and (12)
to express the shear viscosity coefficient η as a time inte-
gral of autocorrelation function of stress tensor [45]. This
is the Green-Kubo or fluctuation-dissipation approach in
the context of shear viscosity. In general Green-Kubo for-
mulas express a macroscopic phenomenological transport
coefficient, like viscosity, as a time integral of microscopic
time-correlation function. For shear viscosity we use the
stress autocorrelation function (SAF) defined as:

Jxy(t) = 〈σxy(0)σxy(t)〉, (13)

where 〈· · · 〉 represents a statistical ensemble average,
only in Section II B. The off-diagonal terms of the stress
tensor σxy are given by

σxy = − 1

Vtot





N
∑

i=1

mivx,ivy,i +
∑

i

∑

j>i

rxijr
y
ijV

′(rij)

rij



 ,

(14)

where x and y denote Cartesian coordinates, mi is the
mass of ion i and rij the distance between ions i and
j, and Vtot the total volume of the system. The in-
teraction force between ions i and j enters in the sec-
ond term through V ′(r) ≡ dV/dr. The first term of
the stress tensor in the right hand side of Eq. (14)

σxy,kin =
∑N

i=1 mivx,ivy,i, is a kinetic part that rep-
resents transverse momentum transfer by ion displace-
ment [15, 45]. This term is important in weakly coupled
plasma. For example, there would be a large contribu-
tion to this term for an ion that travels a long distance
before scattering, and in that collision transfers momen-
tum transverse to its initial motion. The second term
is the potential part σxy,pot which depends on the pair
potential interaction V (rij). In strongly coupled plasma
this becomes the dominant factor in momentum trans-
port. Whereas the contribution to the kinetic viscosity
was large for more persistent motion before scattering,
this term is large for more persistent configurations with
shear stress; a fluctuation induces a configuration with
interionic forces that give a shear stress and that shear
stress persists.

The Green-Kubo form for shear viscosity is

η = lim
t→∞

1

nkBT

∫ t

0

dτJxy(τ). (15)

Since our MD simulations only have dynamic ions, not
dynamic electrons, the Green-Kubo formula gives the
ionic viscosity. Plasmas have an electronic viscosity as
well, but in a weakly coupled deuterium plasma it is
smaller than the ionic viscosity roughly by a factor of
√

me/mD and is negligible [7, 47]. As the high-Z (Ar)
component is added, the ionic viscosity drops, at least
initially, and the electronic viscosity becomes relatively
more important. For the conditions studied here, the
electronic viscosity is always less than the ionic viscosity
and it is relatively well understood, so we will ignore it.

We make use of some properties of the plasma to im-
prove the statistical convergence of the viscosity calcu-
lation. For the isotropic three dimensional case we can
make use of invariance under 90 degree rotations to de-
duce that Jxy(t) = Jxz(t) = Jyz(t) ≡ J(t). Two other
independent components of shear stress tensor can be
constructed as differences of the diagonal terms [20, 48].
Therefore we can get good statistics in extracting the
value of the SAF by averaging over five components of
the shear stress tensor.

It will be useful to separate the SAF in terms of three
components: a kinetic Jxy,kin ≡ 〈σxy,kin(0)σxy,kin(t)〉, a
potential Jxy,pot ≡ 〈σxy,pot(0)σxy,pot(t)〉 and a cross term
given by Jxy,cross ≡ 〈σxy,pot(0)σxy,kin(t)〉. This enables
us to write the shear viscosity as a sum of three terms:



5

η = ηkin + ηpot + ηcross each of which is given by

ηkin = lim
t→∞

1

nkBT

∫ t

0

dτ 〈σxy,kin(0)σxy,kin(τ)〉 (16)

ηpot = lim
t→∞

1

nkBT

∫ t

0

dτ 〈σxy,pot(0)σxy,pot(τ)〉 (17)

ηcross = lim
t→∞

2

nkBT

∫ t

0

dτ 〈σxy,pot(0)σxy,kin(τ)〉 .(18)

C. Details of the MD simulations

To calculate shear viscosity of a binary mixed plasma
of D with Ar we have performed MD simulations at tem-
peratures T = 100, 200 and 500 eV, and ion number den-
sity 1025/cc. We input the ionization as a free parameter
independent of the thermodynamic conditions of the mix-
tures. The physical ionization can be determined by an
average atom Thomas-Fermi approximation, but we keep
it as an adjustable parameter. We impose that the deu-
terium is fully ionized, Z∗

D = 1, and the ionization of Ar
is Z∗

Ar = 13, which are close to the values computed from
average atom Thomas-Fermi technique [9]. The screen-
ing length that enters the Yukawa ion-ion potential was
computed by using relation (2). For each of the above
conditions we also consider mixtures whose Ar mole frac-
tion is X = 0.01, 0.05, 0.1, 0.2 and 0.5. The calculations
were performed with enough ions (30000 ≤ N ≤ 120000)
over long enough time scales to ensure convergence with
insignificant statistical uncertainty (less than 5%).
The screening length sets an important length scale for

the system. When the screening is strong (κ ≥ 1), the
Yukawa potential is short ranged. In this case it is com-
putationally advantageous to introduce a cutoff for the
interaction potential, limiting the need to sum pairwise
ion-ion interactions only to those ions situated within the
(κ-dependent) cutoff radius.
The MD simulations [49] presented here are initiated

from a spatially random ion configuration, and ion veloc-
ities sampled from a Maxwellian distribution at a given
temperature. The random configuration of the ions of
each component ensures a spatially uniform mixture as
well, suitable for equilibrium MD. The system is initially
equilibrated at the desired temperature using a Nosé-
Hoover [50–52] thermostat (constant number of ions N ,
volume V and temperature T ). Typically the system is
left to equilibrate for 50000 timesteps in this NVT en-
semble. The subsequent production run to calculate the
stress tensor is done in a microcanonical ensemble with
constant N , V and total energy E.
The time scale of the system is set by the ionic plasma

frequency

ωp =

√

e2〈Z∗〉2n
ǫ0〈m〉 . (19)

The timestep in the runs was taken as ∆t ≃ 1/(̟ωE),
where ωE is the Einstein frequency, that physically de-

scribes the oscillatory motion of a caged ion in the well
potential created by its neighbors, and the coefficient ̟
had values in the range 100 ≤ ̟ ≤ 1000. The values of
̟ were chosen such that the timestep is small enough to
accurately resolve the trajectory of ion through collisions.
Usually the value of ̟ = 300 was used; however, in the
cases with T = 500 eV,X ≤ 0.1 and ZAr = 13, we needed
to reduce the timestep by a factor of ten (̟ = 1000)
to resolve strong binary collision events. A more effi-
cient method along the lines of the Kepler predictor al-
gorithm [53], that allows for an improved integration of
the occasional close-encounter collisions, could enable the
use of a longer timestep at high T . We use the following
form for the Einstein frequency [19]:

ωE(κ) =

√

1

3
ωp exp(−0.2κ1.62) (20)

fitted to the Ohta and Hamaguchi MD results [4] account-
ing for screening. In the limit of no screening κ → 0,
the above reduces to ωE = ωp/

√
3. For the condi-

tions studied here the values of ωE span a range from
ωE,min ∼ 1.683 fs−1 for mixtures with 1% Ar at 100 eV,
to ωE,max ∼ 3.272 fs−1 for mixtures with 50% Ar at
500 eV. The timestep needed to ensure conservation of
energy in the MD was as low as 10−4 fs.
The production MD runs in an NVE ensemble were

executed for 2×107 timesteps for each case and the com-
ponents of stress tensor were recorded. The production
run was separated over blocks of tmax ∼ 105 timesteps,
so that the results on different blocks are not correlated.
SAF correlation functions were computed over each block
and their average, corresponding to a time average, was
saved as a table over the time span tmax.

III. MOLECULAR DYNAMICS SIMULATION

RESULTS

In Fig. 2 we present plots of the SAF for different com-
positions at 200 eV. The ionizations of deuterium and
argon were kept constant at 1 and 13, respectively, while
the composition of the binary mixture varied from 1%
to 50% argon mole fraction. The ion number density
was 1025 ion/cm3. In this figure we specifically plot SAF
as function of time for mixtures with Ar mole fraction
X = 0.1, 0.2 and 0.5.
The correlation functions are expected to decay expo-

nentially initially and switch to slower power law decay
at long times due to memory effects and hydrodynamic
modes [45, 54]. As seen by the nearly straight-line de-
crease in the log plot in Fig. 2, these correlation func-
tions decay exponentially to 2 fs or more depending on
the mixture. Beyond that time fluctuations in the tail
of the SAF obscure the form of its long-time decay due
to the high temperature. Nevertheless, it is clear that
the contribution from the long-time tail is insignificant
(< 2%), and we can make the approximation that the
correlation function continues to decay exponentially for
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FIG. 2. (Color online) The stress autocorrelation function
SAF as a function of time that enters in the shear viscosity
plotted for different compositions of binary ionic mixture at
200 eV and 1025 ions/cc. In the inset same results are plotted
in log scale. SAF were calculated out to a time 40 fs (not
shown).

all time. In practice, we have fit the tail and carried out
this extrapolation in the partial integrals of the viscosity.
In Fig. 3 the partial integrals, or more precisely the

cumulative sums, of SAF are shown as a function of time.
The cumulative sums were computed from MD by post-
processing as:

ηcum(t) =





t/∆t
∑

k

ak∆tJ(tk)



 . (21)

where the coefficients ak give the Simpson’s rule approx-
imation to the integral.
These are fit with

ηcum(t) = ηfit

[

1− exp

(

− t

τc

)]

. (22)

The value extracted ηfit is what we report as the shear
viscosity computed from MD. The cumulative sums will
asymptote to slightly different values of ηfit for different
runs. For each case studied we considered five different
initial configurations in order to calculate an error bar.
This variation is shown in Fig. 4 for a particular case
with XAr = 0.1 and T= 200 eV.
Finally in Table I the complete results of MD for

the range of molar composition of Ar between 0.01 and
0.5, and for T = 100, 200 and 500 eV, in ion density
1025 ion/cc are shown. These results are then plotted
with symbols in Fig. 5. It is interesting that for the
highest temperatures T = 200 and 500 eV viscosity is
monotonically dropping with Ar composition. This trend
is an indication that for this range of T the mixtures re-
main weakly coupled with the shear viscosity dominated
by the kinetic contribution.
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FIG. 3. (Color online) Partial integrals in time of the corre-
lation functions shown in Fig. 2. These are the average over
different initial conditions of the cumulative sums of the SAF,
as highlighted in Fig. 4, for each respective case. Each SAF
was calculated out to a time of 40 fs (not shown).
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FIG. 4. (Color online) The partial integrals in time of SAF for
five different initial configurations represent with dotted lines.
The solid line is the average. This particular case corresponds
to a mixture with 10% Ar at T=200 eV. The viscosity is found
to be 0.3706±0.033 Pa·s.

This behavior changes for more strongly coupled plas-
mas. Specifically, at 100 eV, the viscosity decays with the
increase of Ar mole fraction until it reaches a minimum
at XAr = 0.2, after which it increases with Ar compo-
sition. This correspond to a transition in the nature of
the momentum transfer, from a fully kinetic regime at
very low Ar composition to being dominated by poten-
tial and cross terms at XAr > 0.1. This transition is
clearly demonstrated in Table II and Fig. 6 where we
plot the total shear viscosity with black dot symbols and
the kinetic component of shear viscosity with red square
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TABLE I. Shear viscosity values computed from MD for bi-
nary mixtures of deuterium and argon at T = 100, 200 and
500 eV with Ar mole fraction XAr = 0.01, 0.05, 0.1, 0.2 and
0.5, at a density n = 1025 ion/cc. Values of the effective
Coulomb coupling Γeff , along with screening κ and mass den-
sity ρ are also shown.

T (eV) XAr η (Pa·s) Γeff κ ρ(g/cc)

100

0.01 0.3483 ± 0.0135 0.8874 1.0329 39.744
0.05 0.2349 ± 0.0124 2.6577 1.1425 64.939
0.1 0.1695 ± 0.0067 5.2603 1.2377 96.432
0.2 0.1490 ± 0.0091 11.4114 1.3644 159.42
0.5 0.1781 ± 0.0067 34.8578 1.5723 348.38

200

0.01 1.0675 ± 0.081 0.4437 0.8472 39.744
0.05 0.5984 ± 0.062 1.3289 0.9748 64.939
0.1 0.3706 ± 0.033 2.6301 1.0927 96.432
0.2 0.2996 ± 0.026 5.70572 1.2544 159.42
0.5 0.2493 ± 0.017 17.4289 1.5130 348.38

500

0.01 5.9345 ± 0.562 0.1775 0.5714 39.744
0.05 2.4632 ± 0.148 0.5315 0.6773 64.939
0.1 1.5905 ± 0.034 1.0521 0.7853 96.432
0.2 0.9496 ± 0.139 2.28229 0.9533 159.42
0.5 0.5081 ± 0.034 6.97155 1.2726 348.38

TABLE II. Shear viscosity values η and its kinetic component
ηkin computed from MD for binary mixtures of deuterium and
argon at T = 100 eV and density n = 1025 ion/cc. Values of
Yukawa coupling are shown in the last column.

XAr η (Pa·s) ηkin (Pa·s) e−κΓeff

0.05 0.2349 ± 0.0124 0.2393 ± 0.0049 0.8479
0.1 0.1695 ± 0.0067 0.1699 ± 0.0048 1.5258
0.2 0.1490 ± 0.0091 0.1220 ± 0.0032 2.9161
0.5 0.1781 ± 0.0067 0.0818 ± 0.0014 7.2355

symbols. It is clear that up to XAr = 0.1 the kinetic term
dominates the shear viscosity.

IV. WEAKLY COUPLED REGIME

In the weak coupling limit, the transport coefficients
including viscosity have been expressed through binary
collision frequencies that enter in Boltzmann kinetic
equation for the velocity distribution function fi(v). For
one component plasma (OCP) in this limit, i.e. Γ ≪ 1,
with Coulomb interactions among the ions and using the
Landau collision operator, the reduced viscosity is [55–
58]:

η∗L ≡ η/η0 =
5

6

√

π

3

1

Γ5/2 ln Λ
, (23)

where the characteristic viscosity η0 is defined as

η0 ≡ mnr2wsωp. (24)

Here ωp is the plasma frequency (19) and lnΛ =

− ln
(√

3Γ3/2
)

is the Coulomb logarithm. More gener-
ally following either the Chapman-Cowling [6] or Burgers
method [59] we can express viscosity, as well as other lin-
ear transport coefficients, through the so-called collision

integrals Ω
(lk)
ij that are linearly proportional to the bi-

nary collision frequency among particles of species i and
j. The collision integrals can be computed numerically or
analytically for different interaction potentials. A more
detailed description can be found in Appendix A.
For plasmas with one ionic species, the first approxima-

tion in the expansion of distribution function around the
Maxwellian gives the following expression for the shear
viscosity coefficient [6, 59]:

[ηi]1 =
5kBT

8Ω
(22)
ii

, (25)

where Ω
(22)
ii is the Chapman-Enskog second-order mo-

mentum collision integral among ions of the same species
i. In the OCP case with Coulomb interactions the colli-
sion integral may be calculated to give

[η∗]1 =
5
√
π

3
√
3Γ5/2F (22)

ii

, (26)

where F (lk)
ij is a generalized Coulomb logarithm [60, 61]

given in Eq. (A6). In the low coupling limit this asymp-
totically matches the Landau lnΛ. Referring to the rela-

tion of F (lk)
ij to the Landau-Spitzer Coulomb logarithm

given in the Appendix (A7) and taking l = k = 2, it can
be shown that Eq. (26) reduces to the Landau form of
viscosity in Eq. (23).
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FIG. 5. (Color online) Viscosity versus composition for T =
100, 200 and 500 eV. The MD results are shown with symbols
compared to the viscosity calculated from Chapman-Enskog
collision integrals shown without symbols.

In the first Enskog approximation the viscosity for bi-
nary mixtures [η]1 is given in Section 9.84 of Chapman
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and Cowling [6]:

[η]1 =
αij + αji +

E
2[ηi]1

+ E
2[ηj ]1

+ 4
3 − 2A

αij

[ηi]1
+

αji

[ηj ]1
+ E

2[ηi]1[ηj ]1
+

4A(mi+mj)2

3Emimj

, (27)

where i and j indicate the two different species and

E ≡ kT (mi +mj)
2

8mimjΩ
(11)
ij

, (28)

A ≡
Ω

(22)
ij

5Ω
(11)
ij

, (29)

with [ηi]1 representing the viscosity of component i as
computed from Eq. (25) using the mixed plasma screen-
ing length described below (31). Also,

αij = nij

(

2

3
+

mi

mj
A

)

, (30)

where nij ≡ Xi/Xj .
In Appendix B we provide a similar form in terms of

Burgers [59] resistant and ratios coefficients. Also, in Ap-
pendix B a simplified approximation of multicomponent
mixture viscosity is described that is well-suited for use
in hydrodynamic codes. It agrees well with Eq. (27) for
the binary mixture cases studied here. More details on
this choice are explained in Appendix B.
As seen from Eq. (27) the value of shear viscosity in

mixtures in the first Enskog approach depends on all col-

lision integrals Ω
(lk)
ij with l, k ≤ 2. This point is discussed

further in Appendix B, where it is shown that two rank-2
scattering integrals make the most significant contribu-
tion, so even in an approximate sense the mapping of the
shear viscosity to Landau’s lnΛ is not one-to-one. This
relationship is different from the one for interdiffusion in
a weakly coupled binary mixture which depends only on

one collision integral Ω
(11)
ij , the rank-1 collision integral

among the two species [9].
To compute the collision integrals that enter in

Eq. (27), we use the effective Yukawa interaction (1)
among the ions [3]. To include collective effects from
other particles, a Lenard-Balescu approach [62, 63] that
introduces a dynamical screening coefficient in an effec-
tive pairwise potential can be used to some extent. This
dynamical screening is due to other particles and it is dif-
ferent from the screening that each ion experiences due
to its electron cloud. The effective pairwise potential can
be used to compute the collision integrals [60].
For situations close to equilibrium, as the one studied

in the Green-Kubo approach, only low frequency com-
ponents of the dynamic screening due to other ions sig-
nificantly contribute to the transport coefficient. As a
consequence an adiabatic approach [64] along the lines of
Paquette et al. [3] is suitable to compute collision inte-
grals that determine the transport coefficients of ions.
As in our previous work on diffusion [9] we adapt the

work of Paquete et al. [3] to compute the shear viscos-
ity. We use the Yukawa potential to compute the col-

lision integrals Ω
(lk)
ij with a screening coefficient λ that

0 0.2 0.4
Ar Mole Fraction

0

0.1

0.2

0.3

0.4

V
is

co
si

ty
 (

P
a·

s)

Total MD Viscosity

Kinetic Part of MD Viscosity

CE with Screened Coulomb

FIG. 6. (Color online) Shear viscosity versus composition for
T = 100 eV at 1025 ion/cc, as computed from the Chapman-
Enskog collision integrals using the tabular values in Paquette
et al. [3]. With black circular symbols results from the MD
simulations for the full shear viscosity are presented. The
kinetic component of the shear viscosity are presented by red
square symbols.

interpolates between the total Debye screening λD and
Wigner-Seitz radius rws by

λ =
√

(λ2
D + r2ws). (31)

The total Debye screening includes ions as well as elec-
trons and is given by

λD =
1

√

λ−2
D,i + λ−2

D,e

, (32)

where λD,i =
√

(ǫ0kBT ) / (n〈Z2〉e2) is the screening due
to ions and λD,e the screening of the electrons expressed
by Eq. (2). The screening λD,e accounts for the electron
partial degeneracy. For a given state (X,n, T, Z∗

1 , Z
∗

2 )
the same value of screening λ is used in the Paquette
tables [3] to compute all of the collision integrals, whether

for like species, Ω
(lk)
ii , or different species, Ω

(lk)
ij .

We compare the results from these kinetics model cal-
culations with the viscosity calculated from MD in Fig. 5.
The MD uses a Yukawa interaction based on λD,e alone
since the other contributions to λ in the kinetics model
account for ion correlations that the MD simulates ex-
plicitly. We see a good agreement at T = 500 eV for ar-
gon content up to XAr = 0.2, with errors less than 50%.
The discrepancy is greater for higher Ar mole fractions
and for lower temperatures. At fixed number density,
increasing the Ar mole fraction and decreasing the tem-
perature increases the plasma coupling of the mixture.
In the more strongly coupled plasmas, the kinetic part
of viscosity decreases, while the potential and cross term
contributions to the viscosity increase.
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While MD inherently accounts for all these contribu-
tions, the kinetic theory based on binary collisions can
only compute the kinetic part [21]. This limitation is
related to the fact that the binary collision operator con-
sidered in the Boltzmann equation does not account for
the contribution to transport coefficients from the poten-
tial energy of the ions. As such this theory can describe
only that part of the momentum transfer mediated by
the particles displacement.
As shown in Fig. 6 the results from the kinetic compu-

tations qualitatively describe the change with composi-
tion of the kinetic part of the shear viscosity. The quan-
titative discrepancy between the kinetic part computed
from MD with the shear viscosity computed by kinetic
theory is due to the fact that at T = 100 eV the mixture
is weakly to moderately coupled with the coupling on the
order of unity as seen in Fig. 1.

V. MIXING RULES

In what follows we describe some mixing schemes that
compute shear viscosity of the mixture in terms of that
of its component. We compare the predictions of those
mixing rules with our MD results.

A. Binary Ionic Mixture for rigid electron

background

Bastea [24] developed a mixing scheme for BIM sys-
tems where the ions interact via a Coulomb potential
with a rigid neutralizing electron background. In his ap-
proach Bastea made use of effective medium theories by
assigning to each ion a volume that is related to the ion-
sphere. The effective viscosity of the binary mixture ηm
was determined using the following relation:

Ψ1
η1 − ηm

η1 + 1.5ηm
= Ψ2

ηm − η2
η2 + 1.5ηm

, (33)

where Ψi is the volume fraction of species i, which in the
ion-sphere model is given by: Ψi ≡ XiZ

∗

i /〈Z∗〉. This
form of mixing rule interpolates between values of the
viscosity of each component based on the OCP model
that he built from his MD results given by:

ηi = η0i
(

0.482Γ−2
i + 0.629Γ−0.878

i + 0.00188Γi

)

, (34)

where η0i ≡ nimir
2
wsωp,i. The plasma frequency of each

species is

ωp,i =

√

e2 (Z∗

i )
2
ni

ǫ0mi
, (35)

and the Coulomb coupling Γi of each component i that
enters in Eq. (34) is given by Eq. (6). We plot with a
green dot-dashed line results from this analysis in Fig. 7.

In the same plot results from MD are shown with sym-
bols.
As the Ar mole fraction increases the shear viscos-

ity decreases while the mixture remains in the kinetic
regime. This decrease is related to the fact that the ef-
fective coupling of the mixture increases as the number
of Ar atoms increases. After about 15-20% Ar the viscos-
ity value reaches a minimum and increases again. This
change corresponds to a transition from the kinetic to po-
tential dominated regime. The corresponding Coulomb
effective coupling where this transition occurs and where
shear viscosity reaches its minimum is at Γeff ∼ 8 − 11.
This behavior is qualitatively captured by using Bastea
mixture rule. However, the value where this transition is
observed is at a much lower value of Ar composition.
Quantitatively, there is substantial discrepancy be-

tween MD and the Bastea mixing rule for almost the
whole range of composition. The main factor for this
discrepancy is the fact that the MD in this work ac-
counts for the polarizability of the free electron fluid,
whereas Bastea built his model for binary ionic mix-
tures immersed in a rigid electron background. He also
showed [24] that this mixing rule describes well MD
results for a system whose particles interact by pure
Coulomb potential. A main outcome from this compar-
ison is the fact that electron polarizability significantly
affects the values computed for shear viscosity. Taking
into account the electron screening results in a weaker
coupled plasma. Therefore the transition from a kinetic
to a potential dominated regime of η occurs at a higher
mole fraction of the high Z material. This explains the
large discrepancy on the value Xmin of the high Z com-
ponent fraction where Bastea mixing rule predicts the
minimum of η versus our MD results. It also explains
the fact that this mixing rule underestimate by a factor
of two the value of η at mixtures with XAr < 10% where
the kinetic term is dominant.

B. Tanaka-Ichimaru approach in the screened OCP

model for dense plasmas

We next compare our MD against shear viscosity mod-
els that were developed for plasmas accounting for the
polarizable electron background (screening). One of the
first such studies for dense plasmas was carried by Tanaka
and Ichimaru [65] (TI) assuming a screened Coulomb
interaction among the ions. They carried out Lenard-
Balescu calculations of the viscosity of the plasma includ-
ing local field corrections to extend the Lenard-Balescu
description of the weakly coupled plasmas to moderate
coupling. Using hypernetted chain to determine the ra-
dial distribution functions, they computed the reduced
shear viscosity including the generalized Coulomb loga-
rithm F(Γ,Θ):

η∗TI =
5

6

√

π

3

1

Γ5/2 F(Γ,Θ)
, (36)
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FIG. 7. (Color online) Shear viscosity of a mixed D-Ar system
from MD at T=100 eV and ion density 1025 ion/cc. The
charge of D and Ar are respectively ZD = 1 and ZAr = 13.
The results from MD are shown with symbols. Estimates from
Bastea mixing model are shown with the green dot-dashed
line. Results from the extension to mixtures of the Murillo’s
YVM prescription are shown with the solid red line.

where F(Γ,Θ) is parametrized by:

F(Γ,Θ) =
−1.5 lnΓ + a(Θ) + b(Θ)Γ

1 + c(Θ)Γ5/2
. (37)

As usual Γ is the Coulomb coupling and Θ the elec-
tron degeneracy (10). The parameters a(Θ), b(Θ) and
c(Θ) were fitted in Ref. [65] with Padé approximations
to a limit range of thermodynamics conditions that cor-
respond to values of Θ = 0.1, 1, 10 and Γ = 0.1, 0.2, 0.5, 1
and 2.
To extend this model to a binary mixture akin to the

one studied in this article we use the effective one-fluid
mixing rule of mapping Γ → Γeff . This approach has
also been used previously for shear viscosity [19, 24, 56].
Plugging the Γeff and Θ to Eq. (36) and using the hy-
drodynamic plasma mixture frequency ωp in Eq. (19) we
extract values of shear viscosity from this extended TI
model. Values from this analysis are shown in Table III
along with the computed values from our MD. In this
Table we have highlighted in gray those rows that cor-
respond to cases for which the value of Γeff and Θ fall
within the range used to build the TI model.
The agreement between MD and the extended TI

model is within 50% for the cases highlighted, with larger
errors for some of the other cases. There are two main
factors that contribute to the discrepancy: i) the fact
that the table of the values of Γ and Θ upon which TI is
built is sparse, and ii) the interpolation form in Eq. (2)
that we used in order to extract the screening coefficients
due to electron polarizability may not very accurately ac-
count for the electron-ion correlations. An improvement
on both these issues is beyond the scope of this paper.

TABLE III. Shear viscosity values computed from MD for
binary mixtures of deuterium and argon and from Tanaka
Ichimaru local field correction approach in Eq. (36) replacing
Γ with Γeff . In the second column XAr denotes Ar mole frac-
tion. The values of coupling Γeff and electron degeneracy Θ
are shown in fourth and fifth column, respectively. We have
highlighted in gray those rows that correspond to cases for
which the value of Γeff and Θ fall within the range that the
extended Tanaka-Ichimaru model was built.

T (eV) XAr ηMD (Pa·s) ηTI (Pa·s) Γeff Θ

100

0.01 0.3483 ± 0.0135 0.2969 0.8874 0.5478
0.05 0.2349 ± 0.0124 0.1394 2.6577 0.4319
0.1 0.1695 ± 0.0067 0.0989 5.2603 0.3493
0.2 0.1490 ± 0.0091 0.0729 11.4114 0.2613
0.5 0.1781 ± 0.0067 0.0519 34.8578 0.1615

200

0.01 1.0675 ± 0.081 0.9295 0.4437 1.0957
0.05 0.5984 ± 0.062 0.3934 1.3289 0.8638
0.1 0.3706 ± 0.033 0.2626 2.6301 0.6986
0.2 0.2996 ± 0.026 0.1830 5.7057 0.5226
0.5 0.2493 ± 0.017 0.1229 17.4289 0.3229

500

0.01 5.9345 ± 0.562 4.6869 0.1775 2.7392
0.05 2.4632 ± 0.148 1.62398 0.5315 2.1595
0.1 1.5905 ± 0.034 1.0136 1.0521 1.7464
0.2 0.9496 ± 0.139 0.6534 2.2823 1.3065
0.5 0.5081 ± 0.034 0.4040 6.9716 0.8073

C. Yukawa Viscosity Model and its extension to

mixtures

The TI model presented in the previous section is less
practical for computation of transport coefficients for sys-
tems where the ions interact with an effective screened
Yukawa potential. A thorough parametric study of vis-
cosity for one component Yukawa systems was conducted
by Saigo and Hamaguchi [17] and Salin and Caillol [25].
The authors explored different values of the pair (Γ, κ)
and used MD to extract the shear viscosity values. The
two works are complimentary to each other in terms of
the (Γ, κ) space that they covered.
Murillo has developed a model for the viscosity of

single-species Yukawa systems [19], the Yukawa Viscos-
ity Model (YVM), motivated by an interest in predicting
the viscosity of liquid metals and warm dense matter.
He based his model on the results from the MD study of
Saigo and Hamaguchi [17]. YVM expresses the viscosity
ηY V M in terms of a reference viscosity η̂0, the plasma
coupling Γ, and the plasma coupling at melt, Γm(κ):

ηY V M = η̂0

(

a (κ)
Γm

Γ
+ b (κ)

Γ

Γm
+ c (κ)

)

, (38)

where the coefficients a, b and c are κ-dependent. This
dependence is in general very weak [17], which allowed fit-
ting over the cases κ = 2 and 3 and extracting the follow-
ing average numbers for these parameters: a = 0.0051,
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b = 0.374 and c = 0.022. The characteristic viscosity η̂0
is:

η̂0 =
√
3ωEmnr2ws, (39)

where ωE is the Einstein frequency given by Eq. (20),
explicitly

η̂0 =

√

m (Z∗)2e2n

ε0
n r2ws exp

(

−0.2κ1.62
)

(40)

=
√

3mΓ kBT n rws exp
(

−0.2κ1.62
)

. (41)

The expression for Γm:

Γm(κ) = Γm(0) + 82.8 exp
(

0.565κ1.38 − 1
)

(42)

is a refitting of the Yukawa MD melt values from Ham-
aguchi, Farouki and Dubin [66]. The value of coupling at
melt for an OCP system at κ = 0 is Γm(0) = 171.8.
Equations (38) and (40) were obtained by fitting to
Yukawa MD calculations of viscosity by Saigo and Ham-
aguchi [17]. These MD calculations were done for values
of Γ ranging in the range 2 − 1000 and values of the
screening κ in the range 0.1− 3. The YVM model gave a
good description of the MD results over this range of Γ.
It was also suggested [19] that although the YVM model
was built to fit the above range of Γ for κ = 2 and 3, it
can still describe systems with other values of κ close to
the above values. In this range the YVM model provides
accurate values of shear viscosity of liquid metals at the
conditions that it was meant to describe. To extend this
model to the limit of very hot plasmas, in which case
both Γ and κ go to 0, Rudd [67] developed an extended
YVM (eYVM) model. We provide some details of this
model at Appendix C and refer the interested reader to
Ref [67].

We adapt the YVM to mixtures by using the one-fluid
mixing rule of mapping Γeff to Γ, as well as mapping 〈m〉
to m. Replacing Γ and m with Γeff and 〈m〉, respec-
tively, in Eq. (38) we extract the values of viscosity from
this mixing rule. These are plotted with solid red line
in Fig. 7. As expected YVM is in fairly good agreement
with the MD results at 100 eV for mixtures with more
than 10% Ar. Referring to Table I these correspond to
mixtures with Γeff > 5 and κ > 1.2. The agreement gets
better as the Ar mole fraction is increased and as the tem-
perature is decreased. This stresses the fact that YVM
describes well moderately to strongly coupled plasmas
where the potential and cross term in the shear viscos-
ity are dominant. The model fails to describe accurately
the MD results for low Ar mole fraction and for higher
T , where the plasma is weakly coupled and the viscosity
is dominated from the kinetic component of momentum
transfer. In the next Section we extend the YVM for
mixtures to the weakly coupled regime. This approach is
analogous to the eYVM model that Rudd [67] developed
for pure Yukawa systems.

D. Hybrid kinetics-MD viscosity model for

mixtures

A hybrid Kinetics-Molecular Dynamics (KMD) viscos-
ity model for plasma developed for hydrodynamic codes
blends Murillo’s YVM with the mixture viscosity from
kinetic theory using (27) for binary mixtures. Taking
advantage of the behavior that the viscosity from the ki-
netic model is larger for weak coupling and viscosity from
YVM is larger for strong coupling, the blend smoothly
transitions from the regime where one is larger to the
regime where the other is larger:

ηKMD ≈ ([η]21 + η2Y VM )1/2 . (43)

This model represents in an approximate fashion con-
tribution of the kinetics, cross and potential terms of
viscosity. A more physically based blend could also be
constructed using the coupling parameter Γ like the ap-
proach in Appendix C. As discussed previously the mix-
ture viscosity ηY VM is evaluated from the YVM given
in Eqs. (38) and (40) with Γ and m replaced by Γeff

and 〈m〉, respectively. The results of this hybrid YVM-
Paquette model are shown in Fig. 8 compared with the
MD results, showing reasonably good agreement (within
16%) for all temperatures and mixtures tested. This ap-
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FIG. 8. (Color online) Viscosity for a deuterium-argon mix-
ture at temperatures 100, 200 and 500 eV and ion density
n = 1025 ion/cc. The MD values of the shear viscosity η

are plotted with symbols. The solid lines represents values
of viscosity ηKMD computed by the KMD viscosity model
in Eq. (43). This model represents in an approximate fash-
ion contribution of the kinetics, cross and potential terms of
viscosity. Results from the KMD model and from the equi-
librium MD are in good agreement (within 16%) over the
aforementioned conditions.

proach can be extended to multi-component mixtures by
using a more general formula (B10) for [η]1 given in the
Appendix B.
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VI. SUMMARY

In this Article we have presented results from an MD
study of shear viscosity in binary asymmetric mixture
of dense plasmas. The focus was mixtures of D and Ar
at T = 100, 200 and 500 eV and at the number density
of 1025 ions/cm3. We considered the system as described
by Yukawa interionic potential which effectively describes
the adiabatic screening of the ionic charge from the free
electron cloud. This approach is reasonable at the range
of the thermodynamic conditions studied here. We used
the Green-Kubo approach to extract the value of shear
viscosity from equilibrium MD runs. For the runs exe-
cuted at 100 eV the computed viscosity decreases at low
mole fraction of Ar and increases at higher mole fraction.
This corresponds to a transition in the nature of momen-
tum transfer from purely kinetic at low Ar to potential
at higher Ar composition. It also reflects the change of
viscosity with the coupling of the system for moderate to
strongly coupled plasmas. At the higher temperatures,
200 and 500 eV, the plasma remains weakly coupled and
the aforementioned transition does not occur. As a result
the viscosity only decreases with Ar mole fraction. For
mixtures with less than 10% Ar at 500 eV, which corre-
spond to plasma with the lowest coupling studied here,
viscosity computed from MD compares very well with
values computed from Chapman-Enskog kinetic theories.
At lower temperatures and higher Ar composition, which
corresponds to more strongly coupled plasma, these ki-
netic theories do not agree well with MD. To this end we
developed a simple hybrid model that interpolates be-
tween a kinetic model, the Burgers viscosity using the
Paquette collision integrals, at weak coupling and the
Murillo Yukawa viscosity model at strong coupling. The
hybrid model compares well with the MD results over the
whole range of thermodynamic conditions studied here.
The model is generic and it should work well for dif-
ferent binary mixtures from moderately strong to weak
coupling. Its applicability can be extended to multicom-
ponent mixtures.
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Appendix A: Chapman-Enskog Collision Integrals

This appendix provides a brief overview of collision in-
tegrals. In the Chapman-Enskog approach the transport
coefficients are computed using collision integrals, which
are related to the differential cross sections of a classical
binary collision, integrated over a Maxwellian velocity
distribution. The collision integrals are given by [3, 6]:

Ω
(lk)
ij =

√

kBT

2πmred

∫

∞

0

e−g2

g2k+3φ
(l)
ij dg, (A1)

where mred ≡ mimj/(mi +mj) is the reduced mass and
g ≡ |vi − vj |/vij is a dimensionless velocity normalized

to the thermal velocity vij =
√

2kBT/mred. φ
(l)
ij are the

collision cross sections for a given velocity:

φ
(l)
ij = 2π

∫

∞

0

(1 − cosl χij)b db, (A2)

with the integration over the impact parameter b.
In Eq. (A2) χij is the scattering angle,

χij = π − 2

∫

∞

rmin
ij

b dr

r2
[

1− b2

r2 − Vij(r)
g2kBT

]1/2
. (A3)

Here Vij(r) is the interaction potential between the parti-
cle of type i and j, and rmin

ij is the distance of the closest
approach between the repulsive particles, which is the
root of the following equation:

1− b2
(

rmin
ij

)2 −
Vij

(

rmin
ij

)

g2kBT
= 0. (A4)

For a Coulombic interaction between ions with charges
Z∗

i and Z∗

j , whether the charges are screened or not, there
is a natural scale for the cross-sectional area given by

φ0 ≡ π
(

Z∗

i Z
∗

j e
2
)2

/ (8πǫ0kBT )
2
. Using φ0 to make the

integral in Eq. (A1) dimensionless, the collision integrals
can be written as [3, 61]:

Ω
(lk)
ij =

√

π

mred

(

Z∗

i Z
∗

j e
2
)2

(8πǫ0kBT )
3/2

F (lk)
ij , (A5)

where

F (lk)
ij ≡ 1

2φ0

∫

∞

0

dg e−g2

g2k+3φ
(l)
ij , (A6)

is a generalized Coulomb logarithm. As shown in the de-
tailed work of Baalrud and Daligault [61] in the weak cou-
pling limit for unscreened Coulomb potential, these gen-
eralized Coulomb logarithms are related to the Landau-
Spitzer lnΛ by the following:

F (lk)
ij ∼ l(k − 1)! lnΛij . (A7)
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The Coulomb logarithm is given by:

lnΛij ≡ ln

(

mredv
2
ij

4πǫ0λD,i

Z∗

i Z
∗

j e
2

)

(A8)

where λD,i =
√

(ǫ0kBT ) / (n〈(Z∗)2〉e2) is the screening
due to ions. More generally, to include non-integer k
in Eq. (A7), the factorial (k − 1)! can be replaced by
its analytic continuation, the gamma function Γ(k) ≡
∫

∞

0
sk−1e−s ds. This is a specific case of the more general

one corresponding to a central repulsive potential of the
form Vij(r) ∼ cij /r

ν . In this case it can be shown (cf.
Eq. (10.3,10) in Ref. [6]) that:

Ω
(lk)
ij =

1

2

√

π

mred

c
2/ν
ij

(2kBT )
4−ν
2ν

Γ

(

k + 2− 2

ν

)

φ
(l)
ij (ν),

(A9)

where φ
(l)
ij (ν) is related to the generalized logarithm for

Coulombic potentials for which cij ∼ Z∗

i Z
∗

j e
2/(4πǫ0).

Appendix B: Viscosity of Mixtures in Terms of

Burgers Resistant Coefficients

In the Burgers [59] formalism for the kinetic theories
for gases, transport coefficients are expressed in terms of
resistant coefficients which are inversely proportional to
diffusivity:

Kij = Kji ≡ XiXjn
kBT

[Dij ]1
=

16

3

mimj

mi +mj
ninjΩ

(11)
ij .

(B1)
Burgers’ collision ratios for Coulombic potentials are
given by:

zij = 1−
2Ω

(12)
ij

5Ω
(11)
ij

, (B2)

z ′

ij =
5

2
+

(

Ω
(13)
ij − 5Ω

(12)
ij

)

Ω
(11)
ij

, (B3)

z ′′

ij =
Ω

(22)
ij

Ω
(11)
ij

, (B4)

z ′′′

ij =
Ω

(23)
ij

Ω
(11)
ij

. (B5)

In the first Enskog approach the viscosity for a binary
mixture in terms of Burgers coefficient is given by [59]:

η =
ηi + ηj +

2ηiηj

E

(

αij + αji − 2 z′′

ij

5 + 4
3

)

1 +
2ηiηj

E

(

αij

ηi
+

αji

ηj
+

4 z′′

ij

15E
(mi+mj)

2

mimj

) , (B6)

where i 6= j (i and j denoting the two different ion
species) and αij is given by Eq. (30). In the above

ηi ≡ [ηi]1 is the fluid viscosity of species i given in the first
Enskog approach by Eq. (25) with the mixture screening
λ (31). Also,

E =
2kBT

3

(mi +mj)ninj

Kij
(B7)

which is the same as in Eq. (28). By using definitions
of z ′′

ij in Eq. (B4) and of A in Eq. (29) it follows that
Eq. (B6) simplifies to Eq. (27).
We now briefly consider the viscosity of arbitrary mul-

ticomponent plasmas. Here i and j range over all species,
including i = j. In terms of the interspecies viscous col-
lision frequencies

νij = z ′′

ij Kij/mini =
16

3

nj mj

mi +mj
Ω

(22)
ij , (B8)

the full multicomponent system of viscosity equations has
the form

5

3
nikBT = η(i)

∑

j

νij+

+
∑

j

mimj

mi +mj

(

η(i)νij

mj
− η(j)νji

mi

)

(

10

3 z ′′

ij

− 1

) (B9)

This system of equations is solved for the unknown par-
tial viscosities η(i), in order to calculate the viscosity of
the mixture as η =

∑

i η(i). Burgers proposed an ap-
proximation that avoids the matrix inversion needed to
solve (B9). As a first approximation to the full system
in (B9) Burgers assumed that the net contribution from
the rightmost sum is negligible, which gives:

η ≈ 5

3

∑

i

nikBT







∑

j

νij







−1

. (B10)

This approximation is exact when z′′ij = 10/3 and/or the
total species collision frequency

∑

j νij is the same for

all species i; the latter follows from summing Eq. (B9)
over i. In more general circumstances, this approxi-
mation is usually accurate to a few percent; and, be-
cause it does not involve a matrix inversion, it is a cost-
effective model to employ in hydrodynamic codes. In this
study, its accuracy was found to be better than 0.2%.
Note that the approximation in Eq. (B10), through νij
terms, only involves viscous collision terms proportional

to Ω
(22)
ij , whereas the full expression in Eq. (B9) also in-

volves diffusive (species transfer) collision terms propor-

tional to Ω
(11)
ij . For the conditions studied here in D-Ar

mixtures with XAr > 0.1, we find (νArAr ≈ νDAr) ≫
(νArD ≈ νDD), such that η ≈ (5kBT/3)(nAr/νArAr +
nD/νDAr), which depends heavily on interspecies colli-
sions. In the binary case, Eq. (B6) can be recovered
from (B9) by making the substitutions νii = 5nikBT/3ηi
and νij = 10nikBT α̃ji/3E for i 6= j, where α̃ji =
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FIG. 9. (Color online) A plot of the shear viscosity of deu-
terium as determined from the eYVM over a range of tem-
peratures at the densities indicated in the legend.

(z′′ij/5)(nj/ni)(mi + mj)/mi. The approximate viscos-
ity for a binary mixture from Eq. (B10) is

η ≈ ηi + ηj + 2ηiηj(α̃ij + α̃ji)/E

(1 + 2ηiα̃ji/E)((1 + 2ηjα̃ij/E)
(B11)

for i 6= j.

Appendix C: Extended Yukawa Viscosity Model for

Pure Plasmas

Murillo has developed a model for the viscosity of
single-species Yukawa systems [19], motivated by an in-
terest in predicting the viscosity of liquid metals and
warm dense matter. It is tempting to apply the model
to more weakly coupled systems, but it does not provide
a good description. In the limit of high temperature and
low density, the predicted viscosity goes like the square-
root of density times the temperature.
The linear dependence on temperature is consistent

with the results of kinetic theory such as the Chapman-
Cowling formula if the scattering cross section is indepen-

dent of temperature, which works for some gases but not
others. The dependence on the square-root of density is
not consistent with kinetic theory. To attain an improved
high-temperature, low-density limit, an extension to the
Yukawa Viscosity Model was proposed in Ref. [67]. The
only modification is that Eq. (40) is replaced by

η0 =

√

(mZ∗)2 e2n

ε0

(

1 + C1
1

Γ3A2
2

)1/2

ρ a2 exp
(

−0.2κ1.62
)

(C1)
We will call this model the extended Yukawa Viscosity
Model (eYVM). A2 is given by

A2 = 2

[

log(1 + x̃2
d)−

x̃2
d

1 + x̃2
d

]

(C2)

=

{

x̃4
d + · · · x̃d ≪ 1

2
[

log(x̃2
d)− 1

]

x̃d ≫ 1
(C3)

x̃2
d = 16

(

1 +
1

3Γ3

)

(C4)

Note that were it not for the “1+” in the definition of x̃d,

A2 and F (22) would be equal. For Coulomb interaction

F (22) is as follows:

F (22) = 2

[

log(1 + x2
d)−

x2
d

1 + x2
d

]

, (C5)

x2
d =

16(kBT )
2λ2

d

(Z∗)4 (e24πǫ0)2
(C6)

λ2
d =

ǫ0kBT

n(Z∗e)2
. (C7)

Figure 9 shows the eYVM over a range of tempera-
tures at the densities ρ = 0.01, 0.1, 1, 10, 100, and 1000
g/cc. Overall, the model matches the YVM at strong
coupling and the Chapman-Cowling model at weak cou-
pling, interpolating between the two at intermediate cou-
plings. There is an anomaly associated with the transi-
tion that is evident at low densities. Since the Chapman-
Cowling model does not account for screening in the way
Paquette-based kinetic models do, the agreement of this
model with the MD results is not as good as the hybrid
KMD model described in Section VD.
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